
INTRODUCTION TO
ALGORITHMS:

COMPUTATIONAL
COMPLEXITY

BY VASYL NAKVASIUK, 2013



WHAT IS AN
ALGORITHM?



WHAT IS AN ALGORITHM?

Important issues: correctness, elegance and efficiency.

An algorithm is a procedure that takes any of
the possible input instances and transforms it

to the desired output.



EFFICIENCY
Is this really necessary?



CRITERIA OF EFFICIENCY:
Time complexity
Space complexity 

Time complexity ≠ Space complexity ≠ Complexity of
algorithm



HOW CAN WE MEASURE
COMPLEXITY?



HOW CAN WE MEASURE COMPLEXITY?

EMPIRICAL ANALYSIS (BENCHMARKS)
THEORETICAL ANALYSIS (ASYMPTOTIC ANALYSIS)



BENCHMARKS
EMPIRICAL ANALYSIS



BENCHMARKS
VERSION #1

 

WHAT MEANS “FAST”?



BENCHMARKS
VERSION #2

import time

start = time.time() # Return the time in seconds since the epoch.
my_algo(some_input)
end = time.time()

print(end - start)
     

0.048032498359680176
     



BENCHMARKS
VERSION #3

import timeit

timeit.timeit('my_algo(some_input)', number=1000)
     

1000 loops, best of 3: 50.3 ms per loop
     



BENCHMARKS
VERSION #4

import timeit

inputs = [1000, 10000, 500000, 1000000]

for input in inputs:
    timeit.timeit('my_algo(input)', number=1000)
     

list of 1000 items:
1000 loops, best of 3: 50.3 ms per loop

list of 10000 items:
1000 loops, best of 3: 104.7 ms per loop

list of 500000 items:
1000 loops, best of 3: 459.1 ms per loop

list of 1000000 items:
1000 loops, best of 3: 3.12 s per loop
     



BENCHMARKS
VERSION #5

# Intel Core i7-3970X @ 3.50GHz, RAM 8 Gb, Ubuntu 12.10 x64, Python 3.3.0

import timeit

inputs = [1000, 10000, 500000, 1000000]

for input in inputs:
    timeit.timeit('my_algo(input)', number=1000)
     

list of 1000 items:
1000 loops, best of 3: 50.3 ms per loop

list of 10000 items:
1000 loops, best of 3: 104.7 ms per loop

list of 500000 items:
1000 loops, best of 3: 459.1 ms per loop

list of 1000000 items:
1000 loops, best of 3: 3.12 s per loop
     



EXPERIMENTAL STUDIES HAVE SEVERAL
LIMITATIONS:

It is necessary to implement and test the algorithm in order
to determine its running time.
Experiments can be done only on a limited set of inputs, and
may not be indicative of the running time on other inputs
not included in the experiment.
In order to compare two algorithms, the same hardware and
software environments should be used.



ASYMPTOTIC ANALYSIS
THEORETICAL ANALYSIS



ASYMPTOTIC ANALYSIS
EFFICIENCY AS A FUNCTION OF INPUT SIZE

T(n) – running time as a function of n, where n – size of input.

n → ∞

Random-Access Machine (RAM)



BEST, WORST, AND AVERAGE-CASE
COMPLEXITY

LINEAR SEARCH

T(n) = n ?

T(n) = 1/2 ⋅ n ?

T(n) = 1 ?

def linear_search(my_item, items):
    for position, item in enumerate(items):
        if my_item == item:
            return position
     



BEST, WORST, AND AVERAGE-CASE
COMPLEXITY



BEST, WORST, AND AVERAGE-CASE
COMPLEXITY

LINEAR SEARCH

Worst case: T(n) = n

Average case: T(n) = 1/2 ⋅ n

Best case: T(n) = 1

T(n) = O(n)

def linear_search(my_item, items):
    for position, item in enumerate(items):
        if my_item == item:
            return position
     



HOW CAN WE COMPARE
TWO FUNCTIONS?

WE CAN USE
ASYMPTOTIC NOTATION



ASYMPTOTIC NOTATION



THE BIG OH NOTATION
ASYMPTOTIC UPPER BOUND

O(g(n)) = {f(n): there exist positive constants c and n0 such that

0 ≤ f(n) ≤ c⋅g(n) for all n ≥ n0}

T(n) ∈ O(g(n))

or

T(n) = O(g(n))



Ω-NOTATION
ASYMPTOTIC LOWER BOUND

Ω(g(n)) = {f(n): there exist positive constants c and n0 such that

0 ≤ c⋅g(n) ≤ f(n) for all n ≥ n0}

T(n) ∈ Ω(g(n))

or

T(n) = Ω(g(n))



Θ-NOTATION
ASYMPTOTIC TIGHT BOUND

Θ(g(n)) = {f(n): there exist positive constants c1, c2 and n0 such

that 0 ≤ c1⋅g(n) ≤ f(n) ≤ c2⋅g(n) for all n ≥ n0}

T(n) ∈ Θ(g(n))

or

T(n) = Θ(g(n))



GRAPHIC EXAMPLES OF THE Θ, O AND Ω
NOTATIONS



EXAMPLES

3⋅n2 - 100⋅n + 6 = O(n2),
because we can choose c = 3 and

3⋅n2 > 3⋅n2 - 100⋅n + 6

100⋅n2 - 70⋅n - 1 = O(n2),
because we can choose c = 100 and

100⋅n2 > 100⋅n2 - 70⋅n - 1

3⋅n2 - 100⋅n + 6 ≈ 100⋅n2 - 70⋅n - 1



LINEAR SEARCH
LINEAR SEARCH (VILLARRIBA VERSION):

T(n) = O(n)

LINEAR SEARCH (VILLABAJO VERSION)

T(n) = O(3⋅n + 2) = O(n)

Speed of "Villarriba version" ≈ Speed of "Villabajo version"

def linear_search(my_item, items):
    for position, item in enumerate(items):
        print('position – {0}, item – {0}'.format(position, item))
        print('Compare two items.')
        if my_item == item:
            print('Yeah!!!')
            print('The end!')
            return position
      



TYPES OF ORDER

 
However, all you really need to understand is that:

n! ≫ 2n ≫ n3 ≫ n2 ≫ n⋅log(n) ≫ n ≫ log(n) ≫ 1



THE BIG OH COMPLEXITY FOR DIFFERENT
FUNCTIONS



GROWTH RATES OF COMMON FUNCTIONS
MEASURED IN NANOSECONDS

Each operation takes one nanosecond (10-9 seconds).

CPU ≈ 1 GHz



BINARY SEARCH

T(n) = O(log(n))

def binary_search(seq, t):
    min = 0; max = len(seq) - 1
    while 1:
        if max < min:
            return -1
        m = (min + max) / 2
        if seq[m] < t:
            min = m + 1
        elif seq[m] > t:
            max = m - 1
        else:
            return m
     



PRACTICAL USAGE
ADD DB “INDEX”

Search with index vs Search without index

Binary search vs Linear search

O(log(n)) vs O(n)



HOW CAN YOU QUICKLY FIND OUT
COMPLEXITY?

O(?)



D. E. Knuth, "Big Omicron and Big Omega and BIg Theta", SIGACT News, 1976.

On the basis of the issues discussed here, I
propose that members of SIGACT, and editors

of computer science and mathematics
journals, adopt the O, Ω and Θ notations as

defined above, unless a better alternative can
be found reasonably soon.



BENCHMARKS
OR

ASYMPTOTIC ANALYSIS?
USE BOTH APPROACHES!



SUMMARY
1. We want to predict running time of an algorithm.
2. Summarize all possible inputs with a single “size” parameter

n.
3. Many problems with “empirical” approach (measure lots of

test cases with various n and then extrapolate).
4. Prefer “analytical” approach.
5. To select best algorithm, compare their T(n) functions.
6. To simplify this comparision “round” the function using

asymptotic (“big-O”) notation
7. Amazing fact: Even though asymptotic complexity analysis

makes many simplifying assumptions, it is remarkably useful

in practice: if A is O(n3) and B is O(n2) then B really will be
faster than A, no matter how they’re implemented.



LINKS
BOOKS:

“Introduction To Algorithms, Third Edition”, 2009, by
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest
and Clifford Stein
“The Algorithm Design Manual, Second Edition”, 2008, by
Steven S. Skiena

OTHER:

“Algorithms: Design and Analysis” by Tim Roughgarden 

Big-O Algorithm Complexity Cheat Sheet 
https://www.coursera.org/course/algo

http://bigocheatsheet.com/

https://www.coursera.org/course/algo
http://bigocheatsheet.com/


THE END

THANK YOU FOR ATTENTION!
Vasyl Nakvasiuk
Email: vaxxxa@gmail.com
Twitter: @vaxXxa
Github: vaxXxa  

THIS PRESENTATION:
Source: 

Live: 

https://github.com/vaxXxa/talks

http://vaxXxa.github.io/talks

https://github.com/vaxXxa/talks
http://vaxxxa.github.io/talks

