INTRODUCTION TO ALGORITHMS: COMPUTATIONAL COMPLEXITY **BY VASYL NAKVASIUK, 2013**

WHAT IS AN ALGORITHM?

WHAT IS AN ALGORITHM?

An algorithm is a procedure that takes any of the possible input instances and transforms it to the desired output.

Important issues: correctness, elegance and efficiency.

EFFICIENCY

Is this really necessary?

CRITERIA OF EFFICIENCY:

- Time complexity
- Space complexity

Time complexity ≠ Space complexity ≠ Complexity of algorithm

HOW CAN WE MEASURE COMPLEXITY?

HOW CAN WE MEASURE COMPLEXITY?

EMPIRICAL ANALYSIS (BENCHMARKS) THEORETICAL ANALYSIS (ASYMPTOTIC ANALYSIS)

BENCHMARKS Empirical Analysis

BENCHMARKS Version #1

WHAT MEANS "FAST"?

BENCHMARKS VERSION #2

import time

```
start = time.time() # Return the time in seconds since the epoch.
my_algo(some_input)
end = time.time()
```

```
print(end - start)
```

0.048032498359680176

BENCHMARKS VERSION #3

import timeit

timeit.timeit('my_algo(some_input)', number=1000)

1000 loops, best of 3: 50.3 ms per loop

BENCHMARKS Version #4

import timeit
inputs = [1000, 100000, 500000, 1000000]
for input in inputs:

```
timeit.timeit('my_algo(input)', number=1000)
```

list of 1000 items:
1000 loops, best of 3: 50.3 ms per loop

list of 10000 items:
1000 loops, best of 3: 104.7 ms per loop

list of 500000 items:
1000 loops, best of 3: 459.1 ms per loop

list of 1000000 items:
1000 loops, best of 3: 3.12 s per loop

BENCHMARKS VERSION #5

Intel Core i7-3970X @ 3.50GHz, RAM 8 Gb, Ubuntu 12.10 x64, Python 3.3.0

import timeit

inputs = [1000, 10000, 500000, 1000000]

```
for input in inputs:
    timeit.timeit('my algo(input)', number=1000)
```

list of 1000 items: 1000 loops, best of 3: 50.3 ms per loop

list of 10000 items: 1000 loops, best of 3: 104.7 ms per loop

list of 500000 items:
1000 loops, best of 3: 459.1 ms per loop

list of 1000000 items:
1000 loops, best of 3: 3.12 s per loop

EXPERIMENTAL STUDIES HAVE SEVERAL LIMITATIONS:

- It is necessary to implement and test the algorithm in order to determine its running time.
- Experiments can be done only on a limited set of inputs, and may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments should be used.

ASYMPTOTIC ANALYSIS THEORETICAL ANALYSIS

ASYMPTOTIC ANALYSIS EFFICIENCY AS A FUNCTION OF INPUT SIZE

T(n) – running time as a function of n, where n – size of input. $n \rightarrow \infty$ Random-Access Machine (RAM)

BEST, WORST, AND AVERAGE-CASE COMPLEXITY

LINEAR SEARCH

def linear_search(my_item, items):
 for position, item in enumerate(items):
 if my_item == item:
 return position

T(n) = n? $T(n) = 1/2 \cdot n?$ T(n) = 1?

BEST, WORST, AND AVERAGE-CASE COMPLEXITY

BEST, WORST, AND AVERAGE-CASE COMPLEXITY

LINEAR SEARCH

def linear_search(my_item, items):
 for position, item in enumerate(items):
 if my_item == item:
 return position

Worst case: T(n) = nAverage case: $T(n) = 1/2 \cdot n$ Best case: T(n) = 1

T(n) = O(n)

HOW CAN WE COMPARE **TWO FUNCTIONS?** WE CAN USE ASYMPTOTIC NOTATION

ASYMPTOTIC NOTATION

THE BIG OH NOTATION Asymptotic upper bound

 $O(g(n)) = {f(n): there exist positive constants c and no such that$ $<math>0 \le f(n) \le c \cdot g(n)$ for all $n \ge n_0$

> $T(n) \in O(g(n))$ or T(n) = O(g(n))

Q-NOTATION Asymptotic lower bound

 $\Omega(g(n)) = \{f(n): \text{ there exist positive constants } c \text{ and } n_0 \text{ such that} \\ 0 \le c \cdot g(n) \le f(n) \text{ for all } n \ge n_0\}$

 $T(n) \in \Omega(g(n))$ or $T(n) = \Omega(g(n))$

B-NOTATION Asymptotic tight bound

 $\Theta(g(n)) = \{f(n): \text{there exist positive constants } c_1, c_2 \text{ and } n_0 \text{ such} \\ \text{that } 0 \le c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n) \text{ for all } n \ge n_0 \}$

T(n) ∈ Θ(g(n)) or T(n) = Θ(g(n))

GRAPHIC EXAMPLES OF THE θ, O AND Ω Notations

EXAMPLES

 $3 \cdot n^2 - 100 \cdot n + 6 = O(n^2)$, because we can choose **c** = **3** and $3 \cdot n^2 > 3 \cdot n^2 - 100 \cdot n + 6$

 $100 \cdot n^2 - 70 \cdot n - 1 = O(n^2)$, because we can choose **c = 100** and $100 \cdot n^2 > 100 \cdot n^2 - 70 \cdot n - 1$

 $3 \cdot n^2 - 100 \cdot n + 6 \approx 100 \cdot n^2 - 70 \cdot n - 1$

LINEAR SEARCH

LINEAR SEARCH (VILLARRIBA VERSION):

T(n) = O(n)

LINEAR SEARCH (VILLABAJO VERSION)

```
def linear_search(my_item, items):
    for position, item in enumerate(items):
        print('position - {0}, item - {0}'.format(position, item))
        print('Compare two items.')
        if my_item == item:
            print('Yeah!!!')
            print('The end!')
            return position
```

 $T(n) = O(3 \cdot n + 2) = O(n)$

Speed of "Villarriba version" ≈ Speed of "Villabajo version"

TYPES OF ORDER

Notation	Name
O(1)	Constant
$O(\log(n))$	Logarithmic
$O(\log(\log(n)))$	Double logarithmic (iterative logarithmic)
o(n)	Sublinear
O(n)	Linear
$O(n\log(n))$	Loglinear, Linearithmic, Quasilinear or Supralinear
$O(n^2)$	Quadratic
$O(n^3)$	Cubic
$O(n^c)$	Polynomial (different class for each $c > 1$)
$O(c^n)$	Exponential (different class for each $c > 1$)
O(n!)	Factorial
$O(n^n)$	- (Yuck!)

However, all you really need to understand is that: $n! \gg 2^n \gg n^3 \gg n^2 \gg n \cdot \log(n) \gg n \gg \log(n) \gg 1$

THE BIG OH COMPLEXITY FOR DIFFERENT FUNCTIONS

GROWTH RATES OF COMMON FUNCTIONS MEASURED IN NANOSECONDS

Each operation takes one nanosecond (10⁻⁹ seconds). CPU ≈ 1 GHz

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003 \ \mu s$	$0.01 \ \mu s$	$0.033 \ \mu s$	$0.1 \ \mu s$	$1 \ \mu s$	3.63 ms
20	$0.004 \ \mu s$	$0.02 \ \mu s$	$0.086 \ \mu s$	$0.4 \ \mu s$	1 ms	77.1 years
30	$0.005 \ \mu s$	$0.03 \ \mu s$	$0.147 \ \mu s$	$0.9 \ \mu s$	1 sec	$8.4 \times 10^{15} \text{ yrs}$
40	$0.005 \ \mu s$	$0.04 \ \mu s$	$0.213 \ \mu s$	$1.6 \ \mu s$	18.3 min	
50	$0.006 \ \mu s$	$0.05 \ \mu s$	$0.282 \ \mu s$	$2.5 \ \mu s$	13 days	
100	$0.007 \ \mu s$	$0.1 \ \mu s$	$0.644 \ \mu s$	$10 \ \mu s$	4×10^{13} yrs	
1,000	$0.010 \ \mu s$	$1.00 \ \mu s$	9.966 µs	1 ms		
10,000	$0.013 \ \mu s$	$10 \ \mu s$	$130 \ \mu s$	100 ms		
100,000	$0.017 \ \mu s$	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020 \ \mu s$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023 \ \mu s$	0.01 sec	0.23 sec	1.16 days		
100,000,000	$0.027 \ \mu s$	0.10 sec	2.66 sec	115.7 days		
1,000,000,000	$0.030 \ \mu s$	1 sec	29.90 sec	31.7 years		

BINARY SEARCH

```
def binary_search(seq, t):
    min = 0; max = len(seq) - 1
    while 1:
        if max < min:
            return -1
        m = (min + max) / 2
        if seq[m] < t:
            min = m + 1
        elif seq[m] > t:
            max = m - 1
        else:
            return m
```

 $\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{log}(\mathsf{n}))$

ADD DB "INDEX"

Search with index vs Search without index Binary search vs Linear search O(log(n)) vs O(n)

HOW CAN YOU QUICKLY FIND OUT COMPLEXITY? 0(?)

On the basis of the issues discussed here, I propose that members of SIGACT, and editors of computer science and mathematics journals, adopt the O, Ω and Θ notations as defined above, unless a better alternative can be found reasonably soon.

D. E. Knuth, "Big Omicron and Big Omega and Blg Theta", SIGACT News, 1976.

BENCHMARKS OR ASYMPTOTIC ANALYSIS? USE BOTH APPROACHES

SUMMARY

- 1. We want to predict running time of an algorithm.
- Summarize all possible inputs with a single "size" parameter n.
- 3. Many problems with "empirical" approach (measure lots of test cases with various n and then extrapolate).
- 4. Prefer "analytical" approach.
- 5. To select best algorithm, compare their T(n) functions.
- 6. To simplify this comparision "round" the function using asymptotic ("big-O") notation
- 7. Amazing fact: Even though asymptotic complexity analysis makes many simplifying assumptions, it is remarkably useful in practice: if A is O(n³) and B is O(n²) then B really will be faster than A, no matter how they're implemented.

LINKS

BOOKS:

- "Introduction To Algorithms, Third Edition", 2009, by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein
- "The Algorithm Design Manual, Second Edition", 2008, by Steven S. Skiena

OTHER:

- "Algorithms: Design and Analysis" by Tim Roughgarden https://www.coursera.org/course/algo
- Big-O Algorithm Complexity Cheat Sheet http://bigocheatsheet.com/

THE END

THANK YOU FOR ATTENTION!

- Vasyl Nakvasiuk
- Email: vaxxxa@gmail.com
- Twitter: @vaxXxa
- Github: vaxXxa

THIS PRESENTATION:

Source: https://github.com/vaxXxa/talks Live: http://vaxXxa.github.io/talks