
CONCURRENCY MODELS:
GO CONCURRENCY

MODEL
BY VASYL NAKVASIUK, 2014

KYIV GO MEETUP #1

CONCURRENCY AND
PARALLELISM

CONCURRENCY AND PARALLELISM

THE WORLD IS OBJECT ORIENTED
THE WORLD IS PARALLEL

THE WORLD IS OBJECT ORIENTED AND PARALLEL

CONCURRENCY AND PARALLELISM

Concurrency is a composition of independently
computing things.

Parallelism is a simultaniuse execution of
multiple things.

Concurrency is about dealing with lots of things
at once.

Parallelism is about doing lots of things at once.

Rob Pike, "Concurrency Is Not Parallelism", 2012

CONCURRENCY AND PARALLELISM

CONCURRENT
CONCURRENT AND PARALLEL

PARALLEL

CONCURRENCY AND PARALLELISM

USERS
SOFTWARE
MULTICORE

CONCURRENCY AND PARALLELISM

MOORE’S LAW
CPU: WHY ARE STALLED?

CONCURRENCY AND PARALLELISM
SHARED MEMORY

CONCURRENCY AND PARALLELISM
DISTRIBUTED MEMORY

CONCURRENCY AND PARALLELISM

CONCURRENT SOFTWARE FOR A CONCURRENT WORLD
DISTRIBUTED SOFTWARE FOR A DISTRIBUTED WORLD

FAULT-TOLERANT SOFTWARE FOR AN UNPREDICTABLE WORLD

THREADS AND LOCKS

THREADS AND LOCKS

PROCESS
THREAD

 public class Counting {
 public static void main(String[] args) throws InterruptedException {
 class Counter {
 private int count = 0;
 public void increment() { ++count; }
 public int getCount() { return count; }
 }
 final Counter counter = new Counter();

 class CountingThread extends Thread {
 public void run() {
 for(int x = 0; x < 10000; ++x)
 counter.increment();
 }
 }

 CountingThread t1 = new CountingThread();
 CountingThread t2 = new CountingThread();

 t1.start(); t2.start();
 t1.join(); t2.join();

 System.out.println(counter.getCount());
 }
 }

COUNT != 20000

THREADS AND LOCKS: PROBLEMS

HEISENBUGS
RACE CONDITIONS

THREADS AND LOCKS: LOCKS

MUTUAL EXCLUSION (MUTEX)
SEMAPHORE

HIGH-LEVEL SYNCHRONIZATION

THREADS AND LOCKS: LOCKS

 class Counter {
 private int count = 0;
 public synchronized void increment() { ++count; }
 public int getCount() { return count; }
 }

COUNT == 20000

THREADS AND LOCKS: MULTIPLE LOCKS

“DINING PHILOSOPHERS” PROBLEM

DEADLOCK!

THREADS AND LOCKS: MULTIPLE LOCKS

DEADLOCK
SELF-DEADLOCK

LIVELOCK

THREADS AND LOCKS: MULTIPLE LOCKS

“DINING PHILOSOPHERS” SOLUTIONS
RESOURCE HIERARCHY SOLUTION

ARBITRATOR SOLUTION
TRY LOCK

THREADS AND LOCKS: WIKIPEDIA PARSER

WHAT’S THE MOST COMMONLY USED WORD ON WIKIPEDIA?
“PRODUCER-CONSUMER” PATTERN

THREADS AND LOCKS: WRAP-UP

STRENGTHS
“CLOSE TO THE METAL”

EASY INTEGRATION

WEAKNESSES
ONLY SHARED-MEMORY ARCHITECTURES

HARD TO MANAGE
HARD TO TESTING

FUNCTIONAL
PROGRAMMING

FUNCTIONAL PROGRAMMING

IMMUTABLE STATE
EFFORTLESS PARALLELISM

FUNCTIONAL PROGRAMMING: SUM

 (defn reduce-sum [numbers]
 (reduce (fn [acc x] (+ acc x)) 0 numbers))

 (defn sum [numbers]
 (reduce + numbers))

 (ns sum.core
 (:require [clojure.core.reducers :as r]))

 (defn parallel-sum [numbers]
 (r/fold + numbers))

FUNCTIONAL PROGRAMMING: WIKIPEDIA
PARSER

 (defn count-words-sequential [pages]
 (frequencies (mapcat get-words pages)))

 (pmap #(frequencies (get-words %)) pages)

 (defn count-words-parallel [pages]
 (reduce (partial merge-with +)
 (pmap #(frequencies (get-words %)) pages)))

FUNCTIONAL PROGRAMMING: DIVIDE AND
CONQUER

 (ns sum.core
 (:require [clojure.core.reducers :as r]))

 (defn parallel-sum [numbers]
 (r/fold + numbers))

FUNCTIONAL PROGRAMMING: REFERENTIAL
TRANSPARENCY

 (+ (+ 1 2) (+ 3 4)) → (+ (+ 1 2) 7) → (+ 3 7) → 10

 (+ (+ 1 2) (+ 3 4)) → (+ 3 (+ 3 4)) → (+ 3 7) → 10

FUNCTIONAL PROGRAMMING: WRAP-UP

STRENGTHS
REFERENTIAL TRANSPARENCY

NO MUTABLE STATE

WEAKNESSES
LESS EFFICIENT THAN ITS IMPERATIVE EQUIVALENT

SOFTWARE
TRANSACTIONAL
MEMORY (STM)

STM

MUTABLE STATE
CAS (COMPARE-AND-SWAP)

TRANSACTIONS ARE ATOMIC, CONSISTENT, AND ISOLATED

STM

 (defn transfer [from to amount]
 (dosync
 (alter from - amount)
 (alter to + amount)))

 => (def user1 (ref 1000))

 => (def user2 (ref 2000))

 => (transfer user2 user1 100)
 1100

 => @checking
 1100

 => @savings
 1900

STM: WRAP-UP

STRENGTHS
EASY TO USE

WEAKNESSES
RETRYING TRANSACTIONS

SPEED

ACTOR MODEL

ACTOR MODEL

CARL HEWITT (1973)
ACTOR – LIGHTWEIGHT PROCESS

MESSAGES AND MAILBOXES

ACTOR MODEL
 defmodule Talker do
 def loop do
 receive do
 {:greet, name} -> IO.puts("Hello, #{name}")
 {:bye, status, name} -> IO.puts("Bye, #{status} #{name}")
 end
 loop
 end
 end

 pid = spawn(&Talker.loop/0)

 send(pid, {:greet, "Gopher"})
 send(pid, {:bye, "Mrs", "Pike"})

 sleep(1000)

 Hello, Gopher
 Bye, Mrs Pike

ACTOR MODEL

PATTERN MATCHING
BIDIRECTIONAL COMMUNICATION

NAMING PROCESSES
SUPERVISING A PROCESS

ACTOR MODEL

DISTRIBUTION
CLUSTER

REMOTE MESSAGING

ACTOR MODEL: WRAP-UP

STRENGTHS
MESSAGING AND ENCAPSULATION

FAULT TOLERANCE
DISTRIBUTED PROGRAMMING

WEAKNESSES
WE STILL HAVE DEADLOCKS

OVERFLOWING AN ACTOR’S MAILBOX

COMMUNICATING
SEQUENTIAL PROCESSES

(CSP)

COMMUNICATING SEQUENTIAL PROCESSES
(CSP)

SIR CHARLES ANTONY RICHARD HOARE (1978)
SIMILAR TO THE ACTOR MODEL

FOCUS ON THE CHANNELS

Rob Pike

Do not communicate by sharing memory,
instead share memory by communicating

CSP

GOROUTINES
IT'S VERY CHEAP

IT'S NOT A THREAD
COOPERATIVE SCHEDULER VS PREEMPTIVE SCHEDULER

MULTITHREADING, MULTICORE

 go func()

@rob_pike

Just looked at a Google-internal Go server with
139K goroutines serving over 68K active
network connections. Concurrency wins.

CSP: CHANNELS
CHANNELS – THREAD-SAFE QUEUE
CHANNELS – FIRST CLASS OBJECT

 // Declaring and initializing
 var ch chan int
 ch = make(chan int)
 // or
 ch := make(chan int)
 // Buffering
 ch := make(chan int, 100)

 // Sending on a channel
 ch <- 1

 // Receiving from a channel
 value = <- ch

CSP
EXAMPLE

 func main() {
 jobs := make(chan Job)
 done := make(chan bool, len(jobList))

 go func() {
 for _, job := range jobList {
 jobs <- job // Blocks waiting for a receive
 }
 close(jobs)
 }()

 go func() {
 for job := range jobs { // Blocks waiting for a send
 fmt.Println(job) // Do one job
 done <- true
 }
 }()

 for i := 0; i < len(jobList); i++ {
 <-done // Blocks waiting for a receive
 }
 }

CSP: WRAP-UP

STRENGTHS
FLEXIBILITY

NO CHANNEL OVERFLOWING

WEAKNESSES
WE CAN HAVE DEADLOCKS

GO CONCURRENCY: WRAP-UP

STRENGTHS
MESSAGE PASSING (CSP)

STILL HAVE LOW-LEVEL SYNCHRONIZATION
DON'T WORRY ABOUT THREADS, PROCESSES

WEAKNESSES
NIL

WRAPPING UP

THE FUTURE IS IMMUTABLE
THE FUTURE IS DISTRIBUTED
THE FUTURE WITH BIG DATA

USE RIGHT TOOLS
DON'T WRITE DJANGO/ROR BY GO/CLOJURE/ERLANG

LINKS
BOOKS:

“Seven Concurrency Models in Seven Weeks”, 2014, by Paul
Butcher
“Communicating Sequential Processes”, 1978, C. A. R. Hoare

OTHER:

“Concurrency Is Not Parallelism” by Rob Pike
()
“Modern Concurrency” by Alexey Kachayev
()
A Tour of Go ()

http://goo.gl/hyFmcZ

http://goo.gl/Tr5USn
http://tour.golang.org/

http://goo.gl/hyFmcZ
http://goo.gl/Tr5USn
http://tour.golang.org/

THE END

THANK YOU FOR ATTENTION!
Vasyl Nakvasiuk
Email: vaxxxa@gmail.com
Twitter: @vaxXxa
Github: vaxXxa

THIS PRESENTATION:
Source: https://github.com/vaxXxa/talks

Live: http://vaxXxa.github.io/talks

https://github.com/vaxXxa/talks
http://vaxxxa.github.io/talks

