CONCURRENCY MODELS:
60 CONCURRENCY
MODEL

BY VASYL NAKVASIUK, 2014

IIIIIIIIIIIIII

CONCURRENCY AND
PARALLELISM

CONCURRENCY AND PARALLELISM

THE WORLD IS OBJECT ORIENTED
THE WORLD IS PARALLEL
THE WORLD IS OBJECT ORIENTED AND PARALLEL

CONCURRENCY AND PARALLELISM

Concurrency is a composition of independently
computing things.

Parallelism is a simultaniuse execution of
multiple things.

Concurrency is about dealing with lots of things
at once.

Parallelism is about doing lots of things at once.

Rob Pike, "Concurrency Is Not Parallelism", 2012

CONCURRENCY AND PARALLELISM

CONCURRENT
CONCURRENT AND PARALLEL
PARALLEL

CONCURRENCY AND PARALLELISM

USERS
SOFTWARE
MULTICORE

CONCURRENCY AND PARALLELISM

MOORE'S LAW
CPU: WHY ARE STALLED?

CONCURRENCY AND PARALLELISM
SHARED MEMORY

CONCURRENCY AND PARALLELISM
DISTRIBUTED MEMORY

CONCURRENCY AND PARALLELISM

CONCURRENT SOFTWARE FOR A CONCURRENT WORLD
DISTRIBUTED SOFTWARE FOR A DISTRIBUTED WORLD
FAULT-TOLERANT SOFTWARE FOR AN UNPREDICTABLE WORLD

THREADS AND LOCKS

THREADS AND LOCKS

PROCESS
THREAD

public class Counting {
public static void main(String[] args) throws InterruptedException {

class Counter ({
private int count = 0;
public void increment() { ++count; }
public int getCount() { return count;

}

final Counter counter = new Counter();

class CountingThread extends Thread {

public void run() {
for(int x = 0; x < 10000; ++x)
counter.increment();

}

CountingThread tl1 = new CountingThread(
CountingThread t2 = new CountingThread(

):
)i

tl.start(); t2.start();
tl.join(); t2.join();

System.out.println(counter.getCount());

THREADS AND LOCKS: PROBLEMS

HEISENBUGS
RACE CONDITIONS

THREADS AND LOCKS: LOCKS

MUTUAL EXCLUSION (MUTEX)
SEMAPHORE
HIGH-LEVEL SYNCHRONIZATION

THREADS AND LOCKS: LOCKS

class Counter {
private int count = 0;
public synchronized void increment() { ++count; }
public int getCount() { return count; }

COUNT == 20000

THREADS AND LOCKS: MULTIPLE LOCKS
“DINING PHILOSOPHERS” PROBLEN

THREADS AND LOCKS: MULTIPLE LOCKS

DEADLOCK
SELF-DEADLOCK
LIVELOCK

THREADS AND LOCKS: MULTIPLE LOCKS
“DINING PHILOSOPHERS” SOLUTIONS

RESOURCE HIERARCHY SOLUTION
ARBITRATOR SOLUTION
TRY LOCK

THREADS AND LOCKS: WIKIPEDIA PARSER
WHAT'S THE MOST COMMONLY USED WORD ON WIKIPEDIA?

“PRODUCER-CONSUMER™ PATTERN

ueue

THREADS AND LOCKS: WRAP-UP

FUNGTIONAL
PROGRAMMING

FUNCTIONAL PROGRAMMING

IMMUTABLE STATE
EFFORTLESS PARALLELISM

(defn reduce-sum [numbers]
(reduce (fn [acc x] (+ acc x)) 0 numbers))

(defn sum [numbers]
(reduce + numbers))

(ns sum.core
(:require [clojure.core.reducers :as r]))

(defn parallel-sum [numbers]
(r/fold + numbers))

FUNCTIONAL PROGRAMMING: WIKIPEDIA
PARSER

{ count-words-sequential [pages]
(frequencies (get-words pages)))

(pmap #(frequencies (get-words %)) pages)

{ count-words-parallel [pages]
{ { merge-with +)
(pmap #(frequencies (get-words %)) pages)))

FUNCTIONAL PROGRAMMING: DIVIDE AND
CONQUER

(:require [clojure.core.reducers :as r]))

{ parallel-sum [numbers]
(r/fold + numbers))

— — > Reduce
= Combine

FUNCTIONAL PROGRAMMING: REFERENTIAL
TRANSPARENCY

FUNCTIONAL PROGRAMMING: WRAP-UP

SOFTWARE
TRANSACTIONAL
MEMORY (STM)

STM

MUTABLE STATE
CAS (COMPARE-AND-SWAP)
TRANSACTIONS ARE ATOMIC, CONSISTENT, AND ISOLATED

(defn transfer [from to amount]
(dosync
(alter from - amount)
(alter to + amount)))

=> (def userl (ref 1000))

=> (def user2 (ref 2000))

=> (transfer user2 userl 100)
1100

=> @checking
1100

=> @savings
1900

STM: WRAP-UP

AGTOR MODEL

ACTOR MODEL

CARL HEWITT (1973)
ACTOR - LIGHTWEIGHT PROCESS
MESSAGES AND MAILBOXES

defmodule Talker do
def loop do
receive do
{:greet, name} -> IO.puts("Hello, #{name}")
{:bye, status, name} -> IO.puts("Bye, #{status} #{name}")

end
loop
end
end

pid = spawn(&Talker.loop/0)

send(pid, {:greet, "Gopher"})
send(pid, {:bye, "Mrs", "Pike"})

sleep(1000)

Hello, Gopher
Bye, Mrs Pike

ACTOR MODEL

PATTERN MATCHING
BIDIRECTIONAL COMMUNICATION
NAMING PROCESSES
SUPERVISING A PROCESS

ACTOR MODEL

DISTRIBUTION
CLUSTER
REMOTE MESSAGING

ACTOR MODEL: WRAP-UP

COMMUNICATING
SEQUENTIAL PROCESSES
(9

COMMUNICATING SEQUENTIAL PROCESSES
(CSP)

SIR CHARLES ANTONY RICHARD HOARE (1978)
SIMILAR TO THE ACTOR MODEL
FOCUS ON THE CHANNELS

Do not communicate by sharing memory,

instead share memory by communicating
Rob Pike

(SP
GOROUTINES

IT'S VERY CHEAP

T'S NOT A THREAD

COOPERATIVE SCHEDULER VS PREEMPTIVE SCHEDULER
MULTITHREADING, MULTICORE

go func()

Just looked at a Google-internal Go server with
139K goroutines serving over 68K active

network connections. Concurrency wins.
@rob_pike

// Declaring and initializing
var ch chan int

ch = make(chan int)

// or

ch := make(chan int)

// Buffering

ch := make(chan int, 100)

Sending on a channel
<-1

// Receiving from a channel
value = <- ch

func main() {
jobs := make(chan Job)
done := make(chan bool, len(jobList))

go func() {
for , job := range jobList {
jobs <- job // Blocks waiting for a receive

}

close(jobs)

O

go func() {
for job := range jobs { // Blocks waiting for a send
fmt.Println(job) // Do one job
done <- true
}
()

for i := 0; i < len(jobList); i++ {
<-done // Blocks waiting for a receive

}

CSP: WRAP-UP

G0 CONCURRENCY: WRAP-UP

WRAPPING UP

THE FUTURE 1S IMMUTABLE
THE FUTURE IS DISTRIBUTED
THE FUTURE WITH BIG DATA

USE RIGHT TOOLS
DON'T WRITE DJANGO/ROR BY G0/CLOJURE/ERLANG

LINKS

BOOKS:

e “Seven Concurrency Models in Seven Weeks”, 2014, by Paul
Butcher
e “Communicating Sequential Processes”, 1978, C. A.R. Hoare

OTHER:

e “Concurrency Is Not Parallelism” by Rob Pike

()

e “Modern Concurrency” by Alexey Kachayev

()
e ATour of Go ()

http://goo.gl/hyFmcZ
http://goo.gl/Tr5USn
http://tour.golang.org/

THE END

e Vasyl Nakvasiuk

e Email: vaxxxa@gmail.com
e Twitter: @vaxXxa

e Github: vaxXxa

THIS PRESENTATION:

Source: https://github.com/vaxXxa/talks
Live: http://vaxXxa.github.io/talks

https://github.com/vaxXxa/talks
http://vaxxxa.github.io/talks

